Lecture

Aerothermal Design of Space Transportation Systems

Prof. Dr. Ali Gülhan

ali.guelhan@dlr.de

Tel.: 02203 601 2363 DLR Cologne

- Aerothermal problems of space vehicles
 - Space transportation missions and vehicles
 - Atmospheric properties of different planets
 - \circ Flow regimes
- Aerothermodynamic design approach
 - o Launcher performance prediction
 - Aerothermal design of re-entry flights
 - One dimensional supersonic flow relations
- Methods of preliminary spacecraft design
 - Prandtl-Meyer Expansion und Isentropic Compression
 - Newtonian Flow
 - Tangent Wedge Method
 - o Tangent Cone Method
 - Shock Expansion Method
 - o Taylor Maccoll method

- Effects of viscous hypersonic flows on spacecraft design
 - Boundary Layer Flow
 - Main Properties of Viscous Flow
 - Strong and weak viscous interaction
- Effects of boundary layer transition on spacecraft design
 - Methods to predict boundary layer transition
 - Heat flux augmentation caused by boundary layer transition
 - o Methods to mitigate boundary layer transition effects
- Effects of strong interaction phenomena on spacecraft design
 - Flow separation
 - Shock-Shock-Interaction
 - Shock-Boundary-Layer-Interaction
 - Examples from Space Transportation Mission

- Aerodynamic stability of spacecraft
 - Basics of aerodynamic stability
 - Static and dynamic stability
 - Methods to determine aerdynamic stability
- High enthalpy effects during hypersonic flight
 - Dissociation and recombination effects
 - Thermal und chemical non-equilibrium
 - Heat flux augmentation due to surface catalysis
- High temperature materials
 - Ablative thermal protection materials
 - Re-usable ceramic composite materials
- Fluid-Structure-Interaction during hypersonic flight
 - Thermal fluid-structure interaction
 - Structural fluid-structure interaction

- Design and Performing Hypersonic Flight Experiments
 - Design of hypersonic flight experiments
 - Critical aspects of hypersonic flight experiments
 - Post flight analysis
- Design of Interplanetary Missions
 - Design of interplanetary flight vehicles
 - Critical aspects of interplanetary flight
 - Post flight analysis
- Simulation and Verification Tools
 - Numerical tools
 - Ground testing facilities and measurement techniques
 - Visit of laboratories at DLR Cologne